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In this paper, the generalized stacking fault (GSF) energies in different slip
planes of TiN and MgO are calculated using highly reliable first-principles
density functional theory (DFT) calculations. During DFT calculations, the
issue of different ways to calculate the GSF energetics in ceramic materials
containing more than one element was addressed and applied. For 〈1 1 0〉/{1 1 1}
slip, a splitting of saddle point in TiN was observed. For 〈1 1 2〉/{1 1 1} slip,
a stable stacking fault at a0/3〈1 1 2〉 displacement was formed in TiN. For
synchroshear mechanism where the slip was accompanied by a cooperative
motion of the interfacial nitrogen atoms within the slip plane, a second
stable stacking fault was formed at a0/6〈1 1 2〉 displacement. The energy
barrier for the shuffling of nitrogen atoms from one state to another is
calculated to be 0.70 eV per atom. In contrast, such features are absent in
MgO. These differences highlight the influence of complex bonding nature
(mixed covalent, ionic, and metallic bondings) of TiN, which is substantially
different than that in MgO (simple ionic bonding) on GSF shapes.
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1. Introduction

Titanium nitride (TiN) is a very hard (with typical hardness ranging from 17.3 to
23.8 GPa [1]) ceramic material, yet electrically conductive (room temperature resistivity
of 1.8 × 10−7 Ωm [2]). For bulk TiN, the material is brittle at temperatures below
750 °C [3]. This might suggest that there is little or no dislocation activity in TiN
below such temperature. However, experimentally, significant dislocation activities were
observed at room temperature in Ti–TiN multilayer specimens for which TiN layer is
150 nm in thickness [4]. In recent years, multilayered nanocomposites made of TiN and
Al have been used to explore the effect of layer thickness on hardness and flow strength
[5]. It was found that at layer thickness of less than 5 nm, a high flow strength of 4.5
GPa and a high compressive deformability (5–7% plastic strain) are obtained in such
layered composites. Understanding dislocation slip across Al/TiN interface as well as
through TiN bulk is important to help interpret the experimental phenomena. To this
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end, to provide measures of the resistance to glide of dislocations in TiN, we have cal-
culated the generalized stacking fault (GSF) energies in different slip planes of TiN.

TiN has a rock-salt (B1) crystal structure with mixed covalent, ionic and metallic
bondings. By comparison, MgO with the same crystal structure has simple ionic
bonding. Density functional theory (DFT) calculations of GSF energies in such multi-
component ceramics have been rare in the past. Only recently, some attempts have been
made to calculate the GSF energies in MgO [6,7] using DFT. In the late nineties, Harris
and Bristowe [8,9] also calculated the GSF energies in TiCx, based on empirical
tight binding approach. TiC also adopts the rock-salt structure over a wide range of
stoichiometries.

In this paper, using accurate ab initio DFT calculations, the GSF energies in
different slip planes of both TiN and MgO are systematically studied. Interesting
features are discovered for the GSF energies in TiN and are reported for the first time
here. Subsequently, we compare the DFT results for TiN with the GSF energies in
MgO. Finally, we conclude with a summary.

2. The methods

Our DFT calculations were performed using the Vienna Ab initio Simulation Package
(VASP) [10,11], employing the Perdew, Burke and Ernzerhof (PBE) [12] exchange-
correlation functional and the projector-augmented wave methodology [13]. For slab
calculations, a 7 × 7 × 1 Monkhorst−Pack mesh for k-point sampling and a plane wave
cut-off of 500 eV for the plane wave expansion of the wave functions were used.
Table 1 shows excellent agreement between the present results and previous (calculated
and experimental) values of lattice parameters, bulk modulus and elastic constants of
MgO and TiN in rock-salt crystal structure [14–17].

The concept of GSF energy was introduced by Vitek [18] about 40 years ago. GSF
energy represents the extra energy needed for a rigid shear displacement at a given
glide plane. It can be incorporated into Peierls–Nabarro models to calculate the core
properties of dislocations, and to determine the Peierls stress of dislocations.
GSF energy provides a useful measure of the resistance to glide of dislocations, and

Table 1. Comparison of calculated and experimental values of lattice parameters, bulk modulus
and elastic constants of MgO and TiN. The experimental data are obtained at room temperature.

MgO TiN

Calc. Expt. Calc. Expt.

Lattice paramter (Å) 4.25 4.21a 4.24 4.24c

Bulk modulus (GPa) 163 162b 277 288d

C11 (GPa) 269 297b 639 625e

C12 (GPa) 93 95b 139 165e

C44 (GPa) 146 156b 160 163e

aRef. [38].
bRef. [14].
cRef. [15].
dRef. [37].
eRef. [36].
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also for nucleation of dislocations [19,20]. GSF energy is also useful in identifying
likely and unlikely dislocation dissociation reactions by distinguishing stable and unsta-
ble stacking faults. In the original approach, GSF energy is the excess energy per unit
area, calculated by imposing a rigid shear displacement between two neighbouring lay-
ers of atoms, except that all atoms are allowed to relax in the directions perpendicular
to the shear displacement direction.

We calculated the GSF energies of TiN and MgO on {1 0 0}, {1 1 0} and {1 1 1}
planes along the h1 �1 0i direction and on {1 1 1} planes along the h1 1 �2i direction.
Supercell set-ups for {1 0 0}, {1 1 0} and {1 1 1} slip planes are shown in Figure 1. We
considered a slab with vacuum on either side and the thickness of the slab (30–40 Å) is
sufficient so that both free surfaces have negligible influences on results. Both {1 0 0}
and {1 1 0} surface-terminated slabs are stoichiometric in nature, hence symmetric,
while in the case of {1 1 1} surface-terminated slabs, the surfaces were arranged to
be terminated with N atoms to make the slab symmetric. At each applied shear
displacement, all the atoms were allowed to relax to a high degree of accuracy, with
force on each atom less than 0.03 eV/Å.

For compounds such as TiN and MgO, composed of two elements, we find that the
calculation of GSF energies is more complex than for monatomic crystals, especially on
{1 1 1} planes. For TiN (and similarly for MgO), examples of methods for calculating
GSF energies are schematically shown in Figure 2(a–c), for the case of {1 1 1} plane.

Figure 1. (colour online) Schematic of supercell set-up for different possible slip planes (0 0 1),
(1 1 0) and (1 1 1) in TiN and MgO. The blue atom is Ti or Mg, and the red atom is N or O.
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Figure 2(a) represents the initial unsheared structure. In Figure 2(b), the shear displace-
ment is between one Ti layer and its neighbouring N layer. Alternatively, as shown in
Figure 2(c), the shear displacement can also be applied between two neighbouring Ti
layers at the interface, while allowing the N layer in-between the two Ti layers to relax.
The third way to calculate GSF in TiN is to impose the same shear displacement as in
Figure 2(c), but with the N atoms in the N layer in-between the two Ti layers be
allowed to shift in their positions after the shear displacement. After that the atoms then
undergo relaxations. In this scenario, the so-called synchroshear mechanism [21], the
slip is accompanied by a cooperative motion of the interfacial nitrogen atoms within the
slip plane. So, the N atoms shuffle from one state to another state, overcoming an
energy barrier along the path. In our DFT calculations, we have taken all three scenar-
ios into consideration. In addition, we have also considered the effect of allowing the
surface atoms to relax in the surface normal direction for all cases in Figure 2(a–c).
However, the GSF energy change with and without relaxing surface atoms is found to
be insignificant, typically a few percent at most. For all DFT results reported here, the
calculations were done with top surface atoms fixed.

3. Results and discussions

3.1. TiN: displacements along the 〈1 1 0〉 direction on {0 0 1}, {1 1 0} and {1 1 1}
planes

In B1 structure, cation and anion atoms sit on two inter-penetrating fcc lattice. The
shortest possible Burgers vector for perfect dislocations is a0/2〈1 1 0〉, where a0 is
the lattice constant. We started our GSF energy calculations with shear displacements in
the 〈1 1 0〉 direction in TiN. We considered three low-index shear planes, {0 0 1},
{1 1 0} and {1 1 1}, as these low-index planes are the most likely slip planes for
dislocations in TiN.

The DFT results of GSF energies as a function of shear displacements along the
〈1 1 0〉 direction in {0 0 1}, {1 1 0} and {1 1 1} planes are shown in Figure 3. For both
{0 0 1} and {1 1 0} planes, there is a single saddle point in the GSF energy curve at the
unstable stacking fault. However, this is not true for the {1 1 1} plane. For {1 1 1}
plane, a ‘double hump’ with two saddle points exists in the GSF energy curve with the

Figure 2. (colour online) Schematic of different ways to calculate the general stacking fault
energy in TiN and MgO.
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maximum GSF energy of 1.7 J/m2 at the saddle points. This value is slightly higher
than the unstable stacking fault energy in the {1 1 0} plane case (1.48 J/m2), and is
lower than the unstable stacking fault energy in the {0 0 1} plane case (2.47 J/m2).

Figure 3. (colour online) The GSF energies as a function of shear displacement along 〈1 1 0〉 in
{0 0 1}, {1 1 0} and {1 1 1} planes. ‘1 1 1-N-free’: rigid shearing between two Ti layer and N
allowed to relax freely in between. ‘1 1 1-confined’: similar to ‘1 1 1-N-free’ but all atoms are
allowed to relax in [1 1 1] direction only.

Figure 4. (colour online) The atomic structure before and after relaxation during the calculations
of the GSF energy when the shear displacement is a0/4〈1 1 0〉, for the {1 1 1} plane case. The
blue atom is Ti, and the red atom is N.
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The ‘double hump’ splitting in the {1 1 1} plane case is interesting. In Figure 4, the
atomic structures before and after the structural relaxation when the shear displacement
is a0/4〈1 1 0〉 (or c1), are shown. This displacement is right in the middle of the GSF
energy curve corresponding to a maximum for the case of no splitting. As seen in
Figure 4, a new structure on the slip plane is formed after the relaxation. The relative
shift of the Ti atoms due to the structural relaxation is a0/12h1 �1 2i (or c2). The sum of
c1 and c2 is a Shockley partial vector a0/6〈2 1 1〉. From Figure 4, the new structure at
the interface is equivalent to a stacking fault with displacement of a Shockley partial
vector in the Ti sublattice. It is noted that the sense of the vector is equivalent to the
‘anti-twinning’ sense in an fcc metal, which is opposite in direction to the regular
Shockley partial vector in the ‘twinning’ sense. The splitting also suggests the dissocia-
tion of 〈1 1 0〉/2 dislocation into two Shockley partial dislocations in the 〈2 1 1〉
direction. We calculated the equilibrium distance between the two partials to be 8 Å
from isotropic elasticity [22]. To further investigate this, we also applied the shear
displacements in the 〈1 1 2〉 direction on {1 1 1} plane.

3.2. TiN: displacements along the 〈1 1 2〉 direction on {1 1 1} plane

The DFT calculated GSF energy as a function of shear displacements along the 〈1 1 2〉
direction on {1 1 1} plane is shown in Figure 5. We show three sets of GSF energies
using different relaxation criteria, namely (1) ‘N-fixed-in-plane’: shearing of one N layer
with respect to a neighbouring Ti layer at the interface; (2) ‘without-N-position-changed’:
shearing between two Ti layers at the interface, and N atoms in-between are allowed to
freely relax; and (3) ‘with-N-position-changed’: same as (2) but the N atoms in-between
the two Ti layers at the interface are allowed to jump (shift in positions) in the [1 1 0]

Figure 5. (colour online) The GSF energies as a function of shear displacement along 〈1 1 2〉 in {1
1 1} plane. ‘N-fixed-in-plane’: rigid shearing of N layer with respect to Ti layer. ‘Without-N-posi-
tion-changed’: rigid shearing between two Ti layer and N allowed to relax freely in between. ‘With-
N-position-changed’: rigid shearing between two Ti layer with N allowed to relax freely in between
and shift allowed in [1 1 0] direction.
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direction to find minimum energy. From Figure 5, set 1 has the highest energy, since it
has the lowest degree of freedom. Set 2 has lower energy compared to set 1, but it main-
tained the shape of the energy curve in set 1. In contrast, set 3 has the lowest energy
among all three sets of results and changed the shape of the energy curve in set 1. The
highest energy saddle point in set 1 (and set 2) dropped substantially in energy and split
into two saddles, leaving a stable stacking fault. To facilitate discussion of results, in
Figure 5, four configurations are marked, (1) the initial configuration with zero displace-
ment; (2) the highest energy saddle point configuration in set 1 and set 2 results, with
a0/6〈1 1 2〉 displacement; (3) same displacement as in (2), but a substantially lowered
energy as in set 3 result; and (4) with a0/3〈1 1 2〉 in displacement. The atomic arrange-
ments corresponding to four configurations are shown in Figure 6.

Following the notation of Frank and Nicholas [23,24], we label planes of atoms con-
taining Ti by Roman letters and planes of atoms containing N by Greek letters. The
stacking sequence of the {1 1 1} planes of TiN can be expressed as … AγBαCβAγBαCβ
… In both set 1 and set 2 results, at displacement of a0/6〈1 1 2〉 (configuration 2), which
corresponds to a Shockley partial vector, the stacking sequence is changed
to … AγBαCβ|BαCβAγ …, where ‘|’ indicates the position of the fault plane. In this
configuration, one Ti layer is displaced relative to the neighbouring Ti layer in the ‘twin-
ning’ sense, resulting in the displaced Ti layer atoms (in ‘B’ positions) directly on top of
N atom (in ‘β’ positions), with unrelaxed Ti–N bond length of only 1.2 Å. To compare,

Figure 6. (colour online) The atomic arrangements corresponding to four configurations with dif-
ferent displacements as labeled in Figure 5. Top row shows atomic arrangements with projection
along [1 1 0] direction. Bottom row shows the same atomic arrangements with projection along [1 1
1] direction. The blue atom is Ti, and the red atom is N. Atoms bound by green lines are not dis-
placed and the Ti atoms crossed with red line are shear displaced with respect to underlying Ti layer.
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the Ti–N bond length in TiN bulk is 2.1 Å. Such a structural arrangement leads to large
energy penalty even after structural relaxations.

As depicted in Figure 6, the N atoms at the slip plane can also be ‘shifted’ from the
‘β’ position (configuration 2) to ‘α’ position (configuration 3). In configuration 3, the N
atoms at the slip plane are shuffled between the two states, the earlier defined
synchroshear mechanism. We carried out the DFT nudged elastic band (NEB) method
[25,26] calculations to determine the energy barrier involved in the syschroshear
mechanism. The starting configuration is configuration 2 and the final configuration is
configuration 3. The energy barrier determined is 0.70 eV per atom. The advantage of
the NEB method is that it can detect possible transition states that may involve coupled
motions between atoms [27–31]. This magnitude of energy barrier indicates that such
mechanism will not be operative at low temperature but could be operative in the
intermediate to high temperature range, assuming no other barrier for nucleation. For
configuration 3, the stacking sequence is changed to … AγBαC|α|BαCβAγ …

For further displacement, at a0/3〈1 1 2〉, a stable stacking fault is formed
(configuration 4) in all three sets of results. This corresponds to a Ti layer at the slip
plane displaced by a Shockley partial Burgers vector in the ‘anti-twinning’ sense. The
stacking sequence of {1 1 1} planes is now changed to … AγBαCβ|CβAγBα … In this
configuration, the Ti atoms at the slip plane, which are in ‘C’ positions, are on top of
the neighbouring N atoms, which are in ‘β’ positions. Below this N layer, another layer
of Ti atoms are also in ‘C’ positions. However, such an arrangement does result in a
lowest energy local minimum in the displacement paths for all three sets of results. If it
were in fcc metals, this would correspond to an energetically unfavourable high energy
saddle point.

The above calculations are limited to intrinsic stacking faults. It is also possible to
calculate the GSF energies of extrinsic stacking faults. Geometry considerations lead to
a conclusion that extrinsic faults should be higher in energies than the intrinsic stacking
faults in TiN, therefore such step is omitted in our DFT calculations.

3.3. MgO: displacements along the 〈1 1 0〉 direction on {0 0 1}, {1 1 0} and {1 1 1}
planes and along the 〈1 1 2〉 direction on {1 1 1} plane

Next, we compare the DFT calculated GSF energies in MgO with those in TiN. In
Figure 7, our DFT calculated GSF energies in MgO along the 〈1 1 0〉 direction on the
{0 0 1}, {1 1 0} and {1 1 1} planes are shown and compared to the corresponding
results in TiN. The trends of GSF energies in TiN and MgO are similar on {0 0 1} and
{1 1 0} planes, both indicating a higher Peierls barrier for dislocations on {0 0 1} plane
as compared to {1 1 0} plane. For {1 1 1} plane, when shearing of atoms is applied in
such a way that all atoms are not allowed to relax in the 〈1 1 2〉 direction, then the GSF
energy curves are also similar in both TiN and MgO. When relaxation in the 〈1 1 2〉
direction is allowed, a similar structure is formed in MgO as in TiN, however, the GSF
energy curve in MgO does not show a splitting of the saddle point.

Such influence due to the nature of bonding is also apparent for GSF energies along
〈1 1 2〉/{1 1 1} direction, as shown in Figure 8. While there are two stable stacking
faults observed in the case of TiN, no such stable stacking faults are found in MgO. At
shear displacement of a0/6〈1 1 2〉, the shuffling of O layer atoms at the interface from
one state to another state is still energetically preferred in MgO. However, only a
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metastable stacking fault was formed as a result (see Figure 8). At a0/3〈1 1 2〉 shear
displacement, no splitting of saddle point is observed in MgO.

The calculated GSF energies in MgO are in good agreement with previous DFT
results [6,7]. Experimentally, it was reported the Peierls stresses for a0/2〈1 1 0〉{1 1 0}
dislocations in MgO in the range of 60 to 65 MPa for edge dislocations and
86–170 MPa for screw dislocations [32,33]. The critical resolved shear stress (CRSS) in

Figure 7. (colour online) MgO: The GSF energies as a function of shear displacement along
〈1 1 0〉 on {0 0 1}, {1 1 0} and {1 1 1} planes.

Figure 8. (colour online) MgO: The GSF energies as a function of shear displacement along
〈1 1 2〉 in {1 1 1} plane.
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MgO is about 40 times higher for slip on the {0 0 1} plane compared to that on the
{1 1 0} plane at 800 K [34,35]. We found no experimental Peierls stress measurement
in TiN. The GSF energy results in MgO indicate the correct order of the importance of
dislocation slip planes, {1 1 0} plane followed by {0 0 1} plane. For {1 1 1} slip plane,
the trajectory of slip is also possible, which is accompanied by two Shockley partials
for the perfect dislocation a0/2〈1 1 0〉. From our DFT results of GSF energies in TiN,
accordingly, we expect the order of importance of dislocation slip plane in TiN to be
{1 1 0} plane followed by {1 1 1} plane, and {0 0 1} plane is expected to be least
important.

4. Summary

In summary, we carried out highly reliable DFT calculations to determine the GSF
energies in TiN and MgO for different slip planes and directions of interest. The
differences in GSF energies and the shape of the GSF profiles for these two materials
highlight the influence of the complex bonding nature (mixed covalent, ionic and
metallic bonding) of TiN, which is substantially different from that in MgO (which
displays predominantly ionic bonding). The main findings are briefly summarized as
below:

(1) For compounds such as TiN and MgO, composed of two elements, we find that
the calculation of GSF energies is more complex than in monatomic crystals,
especially on {1 1 1} planes.

(2) For 〈1 1 0〉/{1 1 1} slip, a splitting of saddle point in TiN was observed. Such
splitting is not observed in MgO.

(3) For 〈1 1 2〉/{1 1 1} slip, a stable stacking fault at a0/3〈1 1 2〉 displacement was
formed in TiN, while such stable stacking fault is not observed in MgO.

(4) For synchroshear mechanism where the slip was accompanied by a cooperative
motion of the interfacial nitrogen atoms within the slip plane, a second stable
stacking fault was formed at a0/6〈1 1 2〉 displacement. The energy barrier for
the shuffling of the nitrogen atoms from one state to another is calculated to be
0.70 eV per atom. Such mechanism leading to the formation of stable stacking
fault is also missing in MgO.

(5) The calculated GSF energies in MgO indicate the correct order of the
importance of dislocation slip planes, {1 1 0} plane followed by {0 0 1} plane.
For the {1 1 1} slip plane, the trajectory of slip is also possible, which is
accompanied by two Shockley partials for the perfect dislocation a0/2〈1 1 0〉.
Accordingly, we expect the order of importance of dislocation slip plane in TiN
is {1 1 0} followed by {1 1 1}, and {0 0 1} is least important.
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